New Palladium Carbonyl Clusters: X-Ray Crystal Structure of $\left[\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAc})_{4}\right] \cdot(\mathrm{AcOH})_{2} \dagger$

By Ilya I. Moiseev,* Tatiana A. Stromnova, Michail N. Vargaftig, and Grigori Ja. Mazo
(N. S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Science, 117071 Moscow V-71, U.S.S.R.)
and Ljudmila G. Kuz'mina and Yuri T. Struchkov*
(Institute of Organo-Element Compounds, Academy of Science, 117813 Moscow V-312, U.S.S.R.)

Summary According to X-ray study the complex of stoicheiometry $\mathrm{AcO} \cdot \mathrm{Pd} \cdot \mathrm{CO}$, prepared from $\mathrm{Pd}(\mathrm{OAc})_{2}$ and CO, consists of tetranuclear clusters with two short and two long Pd--Pd bonds.

Binary palladium carbonyls are rather unstable, ${ }^{1} \mathrm{Pd}^{0}$ carbonyls with phosphine ligands ${ }^{2}$ and Pd^{I} or Pd ${ }^{\text {II }}$ carbonyl halides ${ }^{3}$ being relatively more stable.

Our interest in the reactivity of palladium carboxylates towards CO prompted us to investigate carboxylatesubstituted palladium carbonyl complexes. When $\mathrm{Pd}\left(\mathrm{CO}_{2} \mathrm{R}\right)_{2}$ ($\mathrm{R}=\mathrm{Me}, \mathrm{CD}_{3}, \mathrm{Et}$, or Ph) dissolved in various solvents is brought in contact with CO, the reduction of Pd^{11} to the metal usually occurs. However, in carboxylic acids or carboxylic acids-benzene mixtures as solvents, we have
succeeded in preparing relatively stable complexes of stoicheiometry $\mathrm{RCO}_{2} \cdot \mathrm{Pd} \cdot \mathrm{CO} \cdot n \mathrm{RCO}_{2} \mathrm{H}$ where $n=0$ or $0 \cdot 5$.

Thus stirring $\mathrm{Pd}(\mathrm{OAc})_{2}(4.4 \mathrm{mmol})$ in glacial acetic acid (100 ml) under CO for 1.5 h at $50{ }^{\circ} \mathrm{C}$ affords $\mathrm{AcO} \cdot \mathrm{Pd} \cdot \mathrm{CO} \cdot$ 0.5 AcOH (I) as a yellow, crystalline precipitate (80%). Single crystals of (I) were obtained directly from the reaction mixture by carrying out the reaction using dry air-CO (1:1) mixture instead of CO and slightly reduced initial concentration of $\mathrm{Pd}(\mathrm{OAc})_{\mathbf{2}}$. After allowing the reaction mixture to stand for 3 h at $50^{\circ} \mathrm{C}$ without stirring, the temperature was lowered at the rate of $2.5^{\circ} \mathrm{C} \mathrm{h}{ }^{-1}$ and the solution was allowed to stand at $20^{\circ} \mathrm{C}$ for 3-4 days. The composition ${ }_{\ddagger}^{+}$ and i.r. spectrum of the light-brown crystals $(0.3-0.5 \mathrm{~mm}$ in dimension) obtained were identical to those of the finecrystalline compound (I). Both fine and large crystals of

[^0]\ddagger All new complexes gave satisfactory elemental analyses.
(I) lose 0.5 mol of AcOH per Pd atom when kept in vacuo over KOH at $20^{\circ} \mathrm{C}$ for about 10 days affording $\mathrm{AcO} \cdot \mathrm{Pd} \cdot \mathrm{CO}$ (II) as a yellow powder.

Figure. The structure of $\left[\mathrm{Pd}_{4}(\mathrm{CO})_{4}(\mathrm{OAC})_{4}\right] \cdot(\mathrm{AcOH})_{2}$.
The i.r. spectra of (I) and (II) show two strong absorption bands in the C-O stretching region at 1934 and $1975 \mathrm{~cm}^{-1}$ for (I) and at 1940 and $1975 \mathrm{~cm}^{-1}$ for (II). The $\nu(\mathrm{CO})$ bands for the deuterio-analogue of (I) appear at 1931 and $1965 \mathrm{~cm}^{-1}$. The i.r. spectra of $\mathrm{EtCO}_{2} \cdot \mathrm{Pd} \cdot \mathrm{CO}$ and $\mathrm{PhCO}_{2} \cdot \mathrm{Pd} \cdot \mathrm{CO} \cdot 0 \cdot 5$ $\mathrm{PhCO}_{2} \mathrm{H}$, prepared by a similar method, exhibit carbonyl vibrations at 1935 and 1968 , and 1958 and $1980 \mathrm{~cm}^{-1}$, respectively. The assignment of the frequencies for (I) $\left[\nu(\mathrm{CH}), 2994,2945\right.$, and 2920; $\nu\left(\mathrm{CO}_{2}\right), 1555$ and 1518; $\delta_{a s}$ $(\mathrm{Me}), 1420 ; \delta_{s}(\mathrm{Me}), 1350 ; \delta_{s}(\mathrm{HCC}), 1045 ; \delta_{a s}(\mathrm{HCC}), 1028 ;$ $\nu(\mathrm{CC}), 939 ; \delta(\mathrm{OCO}), 665 ; \gamma(\mathrm{Me}), 620 ; \nu_{a s}(\mathrm{PdO}), 305$ and 301 ; and $\nu_{s}(\mathrm{PdO}), 281 \mathrm{~cm}^{-1}$] was made by a comparison with the i.r. spectrum of its deuterio-analogue.

The complexes (I) and (II) are quite stable in dry air at room temperature but rapidly decompose on contact with $\mathrm{H}_{2} \mathrm{O}$ or alcohols resulting in Pd, CO, and CO_{2}; in case of alcohols the reaction also produces dialkyl carbonates. A solution of AcONa in AcOH decomposes (I) into $\mathrm{Pd}, \mathrm{CO}, \mathrm{CO}_{2}$, and acetic anhydride at $90^{\circ} \mathrm{C}$. The structure of (I) has been established by X-ray crystallography.

Crystal data: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{16} \mathrm{Pd}_{4}, M=893 \cdot 8$, triclinic, $a=$ $7.597(3), \quad b=9.927(4), \quad c=10.066(4) \quad \AA, \quad \alpha=62.43(3)$, $\beta=69.89(3), \gamma=74 \cdot 42(3)^{\circ}, \quad Z=2$, space group $P \overline{1}$. Single-crystal X-ray diffraction data were collected with a Syntex $\mathrm{P} 2_{1}$ four-circle automatic diffractometer at $-120^{\circ} \mathrm{C}$ $\left[\lambda\left(\mathrm{Mo}-K_{\alpha}\right)\right.$, graphite monochromator, $\theta-2 \theta$ scan, $2 \theta_{\max }=$ 58°]. 2596 reflections were collected with $I_{\text {obs }}>2 \sigma\left(I_{\mathrm{obs}}\right)$. The structure was solved using the heavy-atom method and refined by full-matrix anisotropic least-squares to $R=$ 0.043 . The structure of the molecule is shown in the Figure.§

The H -atom of the $\mathrm{CO}_{2} \mathrm{H}$ group of AcOH of crystallization was located in the difference synthesis as well as in the 6-7 diffuse maxima associated with each of $C(2), C(4)$, and $C(8)$ atoms revealing a rotational disorder of the Me groups. Standard deviations for the $\mathrm{Pd}-\mathrm{Pd}, \mathrm{Pd}-\mathrm{O}, \mathrm{C}-\mathrm{O}$, and $\mathrm{C}-\mathrm{C}$ bond lengths are $0.001,0.007,0.012$, and $0.015 \AA$, respectively.

Crystals of (I) consist of tetranuclear clusters $\mathrm{Pd}_{4}(\mathrm{CO})_{4}{ }^{-}$ $(\mathrm{OAc})_{4}$ and hydrogen-bonded dimeric molecules of AcOH of crystallization which occupy the symmetry centres ($\frac{1}{2}, \frac{1}{2}, 0$) and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$, respectively. The Pd_{4} framework of the cluster is a parallelogram, its angles differing markedly from perpendicular (Figure). Atoms $\operatorname{Pd}(1), \operatorname{Pd}\left(2^{\prime}\right)$ and $\operatorname{Pd}\left(\mathbf{1}^{\prime}\right), \operatorname{Pd}(2)$ are connected by acetate bridges, $\operatorname{Pd}\left(\mathbf{1}^{\prime}\right), \operatorname{Pd}\left(2^{\prime}\right)$ and $\operatorname{Pd}(\mathbf{1})$, $\operatorname{Pd}(2)$ are connected by CO bridges. The bridges of both types are symmetrical within error limits.

The $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ bond distance $[2 \cdot 663(1) \AA]$ lies well within the range reported for $\mathrm{Pd}-\mathrm{Pd}$ bonds $(2.53-2.70 \AA)$ in Pd^{I} complexes. ${ }^{4}$ The $\operatorname{Pd}(1)-\operatorname{Pd}\left(2^{\prime}\right)$ distance $(2 \cdot 909 \AA)$ is longer than the $\mathrm{Pd}-\mathrm{Pd}$ bond length ($2.751 \AA$) in the metal ${ }^{5}$ but is noticeably shorter than twice the covalent radius of $\operatorname{Pd}\left(2.98 \AA^{6}\right)$. A similar $\operatorname{Pd}-\mathrm{Pd}$ distance $(2.94 \AA)$ was found in $\left.\left[\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Pd}_{2}(\mu-\mathrm{OAc})_{2}\right]^{7}$ where $\left[\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Pd}\right]^{+}$fragments are connected by acetate-anion bridges. Thus complex (I) consists of $\left[\mathrm{Pd}_{2}(\mathrm{CO})_{2}\right]^{2+}$ fragments connected in pairs with carboxylate bridges. $\mathrm{Pd}_{2}(\mathrm{OAc})$ fragments are planar and form dihedral angle of 32° for $\mathrm{Pd}\left(\mathbf{1}^{\prime}\right) \mathrm{O}(3) \mathrm{O}(4) \mathrm{C}(3) \mathrm{C}(4) \mathrm{Pd}(2)$ and -41° for $\operatorname{Pd}\left(1^{\prime}\right) \mathrm{O}(1) \mathrm{O}(2) \mathrm{C}(1) \mathrm{C}(2) \mathrm{Pd}(2)$ with the Pd_{4} plane so that the dihedral angle between the planar fragments $\mathrm{Pd}(1) \mathrm{C}(5) \mathrm{O}(5) \mathrm{Pd}(2)$ and $\mathrm{Pd}(1) \mathrm{C}(6) \mathrm{O}(6) \mathrm{Pd}(2)$ (including carbonyl bridges) is 159°, both fragments being equally inclined to the Pd_{4} plane. Molecules of AcOH of crystallization form centrosymmetrical dimers owing to the strong hydrogen bonds $\mathrm{O}(7)-\mathrm{H} \cdots \mathrm{O}\left(8^{\prime}\right)$ with distances $\mathrm{O}(7) \cdots$ $\mathrm{O}\left(8^{\prime}\right), 264 ; \mathrm{O}(7)-\mathrm{H}, 1 \cdot 0(1)$; and $\mathrm{H} \cdots \mathrm{O}\left(8^{\prime}\right), 1 \cdot 7(1) \AA$, and the angle $\mathrm{O}(7)-\mathrm{H} \cdots \mathrm{O}\left(8^{\prime}\right), \mathbf{1 5 6 (6)}{ }^{\circ}$. Formation of such dimers is typical of carboxylic acid crystals. ${ }^{8}$

The band due to $\mathrm{O}-\mathrm{H}$ stretching vibrations is likely to be weak because of hydrogen-bonding, and is presumably masked by the group of weak $\mathrm{C}-\mathrm{H}$ bands in the region $2900 \mathrm{~cm}^{-1}$.

The results of X-ray study show that the four i.r. bands which disappear during the transformation of (I) into (II) $[\nu(\mathrm{C}=\mathrm{O}), 1710 ; \delta(\mathrm{Me}), 1018 ; \gamma(\mathrm{OH}), 934$ and $\delta(\mathrm{CCO})$, $497 \mathrm{~cm}^{-1}$] derive from the dimer $(\mathrm{AcOH})_{2}$. All other bands in the $40-4000 \mathrm{~cm}^{-1}$ region are comparable for the complexes (I) and (II). Therefore X-ray and i.r. data lead to the conclusion that the cluster units of (I) and (II) are nearly identical, the sole difference between these compounds being the presence of $(\mathrm{AcOH})_{2}$ molecules in (I).
(Received, 12th September 1977; Com. 956.)
§ The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.
${ }^{1}$ J. H. Darling and J. S. Ogden, Inorg. Chem., 1972, 11, 666; P. Kündig, M. Moskovits, and G. A. Ozin, J. Mol. Struct., 1972, 14, 137.
${ }^{2}$ K. Kudo, M. Hidai, and Y. Uchida, J. Organometallic Chem., 1971, 33, 393.
${ }^{3}$ P. Goggin and J. Mink, J.C.S. Dalton, 1974, 534; V. A. Golodov and E. O. Fischer, J. Gen. Chem. (U.S.S.R.), 1972, 42, 2685; J. A. Kushnikov, A. Z. Beilina, and V. F. Vozdvizjensky, J. Inorg. Chem. (U.S.S.R.), 1971, 16, 416.
${ }^{4}$ G. Allegra, G. Casagrande, A. Immirzi, L. Ponni, and G. Vitulli, J. A mer. Chem. Soc., 1970, 92, 289; S. Z. Goldberg and R. Eisenberg, Inorg. Chem., 1976, 15, 535; A. Ducruix, H. Felkin, C. Pascard, and G. K. Turner, J.C.S. Chem. Comm., 1975, 615; R. G. Holloway, B. R. Penfold, R. Colton, and H. J. McCopmick, ibid., 1976, 485; Y. Kobayashi, Y. Iitaka, and H. Yamazaki, Acta Cryst., 1972, B28, 899.
${ }_{5} \mathrm{~J}$ J. Donohue, 'The Structure of Elements,' Wiley, New York, 1974, p. 216.
${ }^{6}$ V. G. Andrianov, B. P. Biryukov, and J. T. Struchkov, J. Struct. Chem., 1969, 10, 1129.
${ }^{7}$ M. R. Churchill and R. Mason, Nature, 1964, 204, 777.
${ }^{8}$ G. C. Pimentel and A. L. McClellan, 'The Hydrogen Bond,' Freeman, San Francisco and London, and Reinhold, New York, 1960.

[^0]: \dagger No reprints available.

